DISCIPLINE SPECIFIC ELECTIVE COURSE – 4: BIOTECHNIQUES AND INSTRUMENTATION

Course title & Code	Credit s	Credit distribution of the course			Eligibility criteria	Pre- requisit
		Lectur e	Tutoria I	Practical / Practice		e of the course (if any)
MICROB-DSE 4: BIOTECHNIQUES AND INSTRUMENTATIO N	4	2	0	2	Class XII pass with Biology/ Biotechnology / Biochemistry	NIL

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Learning Objectives

The Learning Objectives of this course are as follows:

• The main objective of this paper is to develop a strong understanding of the principles and applications of some basic and advanced techniques frequently used in sciences dealing with biological systems. This will allow the students to relate the concepts of the various areas being taught to them with the working and applicability of the instruments and techniques involved.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Will have learnt about the main components, working principles, and applications of different types of microscopes. The student will also be familiarized with the preparation of samples and staining for microscopy.
- Will have gained knowledge of basic concepts, applications, merits and limitations of various bio separation techniques like chromatography, electrophoresis and centrifugation.
- Will be acquainted with the principles and applications of some analytical techniques like X-ray diffraction and UV-visible spectrophotometry. Will have been introduced to the concepts of advanced techniques like circular dichroism, NMR spectroscopy and mass spectrometry.
- Will be able to use the microscope to determine the size of microbial cells applying the technique of micrometry. Will also be able to separate biomolecules using planar (paper chromatography/ TLC) and column chromatography.

- Will have gained hands-on experience of separation of mixtures using gel electrophoresis techniques (PAGE/Agarose) and laboratory centrifuges. Will have gained knowledge of working of density gradient centrifugation with the help of virtual lab / videos.
- Will be able to determine the λ max for an unknown sample and be able to calculate its extinction coefficient using a spectrophotometer. Will get familiar with the technique of autoradiography and NMR spectroscopy with the help of virtual lab / videos.

Theory:

30 hours

Unit 1: (10 hours)

Principles and applications of microscopy: Concept of resolving power and magnification. Principles, working, and applications of : Bright-field and dark-field microscopy, phase contrast microscopy, fluorescence microscopy, confocal microscopy, electron microscopy (scanning electron microscopy, transmission electron microscopy, and cryo- electron microscopy).

Unit 2: (12 hours)

Principles and applications of separation techniques: Partition chromatography: thin layer chromatography. Column chromatography: gel filtration, ion-exchange, affinity and HPLC. Differential and density gradient centrifugation, ultracentrifugation. Agarose gel electrophoresis. Polyacrylamide gel electrophoresis.

Unit 3: (8 hours)

Principles and applications of other analytical techniques: UV-Visual spectrophotometry (Beer and Lambert Law), X-ray diffraction, circular dichroism, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry.

Practicals:

60 hours

Unit 1: (24 hours)

Micrometry and chromatography: Principle of micrometry. Determination of the sizes of different microbial cells by micrometry. Separation of complex mixtures of biomolecules by paper chromatography/ Thin Layer Chromatography. Group project: Packing and running column chromatography. Determination of molecular weight of a protein using gel filtration chromatography.

Unit 2: (20 hours)

Electrophoresis and centrifugation: Separation of DNA by agarose gel electrophoresis. Separation of proteins by SDS-PAGE. Separation of components of a given mixture using a laboratory scale centrifuge using various rotors. Understanding density gradient centrifugation with the help of virtual lab.

Unit 3: (16 hours)

Imaging and advanced analytical techniques: Using spectrophotometer to determine λ_{max} for an unknown sample and calculation of extinction coefficient. Principle and working of autoradiography. Demonstration of autoradiography using virtual lab / video. Understanding NMR spectroscopy with the help of virtual lab / video.

Suggested Reading (Theory & Practical):

- Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology edited by A. Hofmann and S. Clokie. 8th edition. Cambridge University Press, UK. 2018.
- Prescott's Microbiology by J. M. Willey, K. Sandman and D. Wood. 11th edition. McGraw Hill Higher Education, USA. 2019.
- 3. The Cell: A Molecular Approach by G.M. Cooper. 8th edition. Sinauer Associates, UK. 2018.
- Lehninger Principles of Biochemistry by D.L. Nelson and M.M. Cox. 7th edition. W.H. Freeman and Company, UK. 2017.
- 5. Biophysical Chemistry by D. Klostermeier and M.G. Rudolph. 1st edition. CRC press, UK. 2017.
- 6. Principles of Instrumental Analysis by D.A. Skoog, F.J. Holler and S.R. Crouch. 7th edition. Cengage Learning, USA. 2017.
- 7. Techniques and Methods in Biology. K. L. Ghatak. PHI Learning Private Limited, India. 2011.
- 8. Lab Manual in Biochemistry, Immunology and Biotechnology by A. Nigam and A. Ayyagari. Tata McGraw Hill, India. 2007.
- 9. Physical Biochemistry- Application to Biochemistry and Molecular Biology by D. Freifelder. 2nd edition. W.H. Freemen and Company, USA. 1982.
- 10. Systems Biology: A textbook by E. Klipp et al. 2nd edition. Wiley-VCH. 2016

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.